Suggesting Valid Pharmacogenes by Mining Linked Data

نویسندگان

  • Kevin Dalleau
  • Ndeye Coumba Ndiaye
  • Adrien Coulet
چکیده

A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, those have used only molecular networks or the biomedical literature. Here we propose a novel method that consumes an eclectic set of linked data sources to help validating uncertain drug–gene relationships. One of the advantages relies on that linked data are implemented in a standard framework that facilitates the joint use of various sources, making easy the consideration of features of various origins. Consequently, we propose an initial selection of linked data sources relevant to pharmacogenomics. We formatted these data to train a random forest algorithm, producing a model that enables classifying drug–gene pairs as related or not, thus confirming the validity of candidate pharmacogenes. Our model achieve the performance of F-measure=0.92, on a 100 folds cross-validation. A list of top candidates is provided and their obtention is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning from biomedical linked data to suggest valid pharmacogenes

BACKGROUND A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, only molecular networks or the biomedical literature were used, whereas many other...

متن کامل

Human pharmacogenomic variation of antihypertensive drugs: from population genetics to personalized medicine.

AIM To investigate the human pharmacogenetic variation related to antihypertensive drugs, providing a survey of functional interpopulation differences in hypertension pharmacogenes. MATERIALS & METHODS The study was divided into two stages. In the first stage, we analyzed 1249 variants located in 57 hypertension pharmacogenes. This first-stage analysis confirmed that geographic origin strongl...

متن کامل

Improving the Prediction of Pharmacogenes Using Text-Derived Gene-Drug Relationships

A critical goal of pharmacogenomics research is to identify genes that can explain variation in drug response. We have previously reported a method that creates a genome-scale ranking of genes likely to interact with a drug. The algorithm uses information about drug structure and indications of use to rank the genes. Although the algorithm has good performance, its performance depends on a cura...

متن کامل

Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques

Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...

متن کامل

Improving the prediction of pharmacogenes using text-derived drug-gene relationships.

A critical goal of pharmacogenomics research is to identify genes that can explain variation in drug response. We have previously reported a method that creates a genome-scale ranking of genes likely to interact with a drug. The algorithm uses information about drug structure and indications of use to rank the genes. Although the algorithm has good performance, its performance depends on a cura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015